
The path to maintainable custom
code in Drupal

Write better
code with
Typed Entity

Mateu - e0ipso

Coding Drupal
projects can be
challenging.

Entity types

Business needs

Content types

Bundles

Tagged content

Custom code

Hook implementations

Services

Plugins

FRAMEWORK LOGIC

BUSINESS LOGIC

Complexity is a
feature, and it

needs to be
contained.

THERE’S A
BETTER WAY
TO ORGANIZE
YOUR CODE,
WITH TYPED
ENTITY

PUT LOGIC
CLOSE TO THE
ENTITY, NOT
SCATTERED IN
HOOKS

PUT LOGIC
CLOSE TO THE
ENTITY, NOT
SCATTERED IN
HOOKS

ARE YOU ACCESSING
FIELD DATA ANYWHERE?
$entity->field_foo->value

This is a red flag that indicates you need an entity wrapper.🚩️

!

Entity Types are the main
integration point for custom

business logic.

ENTITIES HAVE MANY
RESPONSIBILITIES
 We render them as content in the screen
 They are used for navigation purposes
 They hold SEO metadata
 We add decorative hints to them
 We use their fields to group content
 They can be embedded
 ...

SIMILAR SOLUTIONS?

There is a core patch to
allow having custom
classes for entity
bundles.

[#2570593]

Node::load(12) → Book

The Bundle Override
module does the same
as the core patch.

(seeking co-maintainer)

https://www.drupal.org/project/drupal/issues/2570593
https://www.drupal.org/project/bundle_override

DRAWBACKS WITH
THAT APPROACH

Increments API
surface of entity
objects.

A method added to
Node can collide with
your Book class.

Unit testing carries
over all the storage
complexity.

Solves the solution
only partially.

How about methods
that apply to many
books?

How can SciFiBook,
HistoryBook, and
Book, coexist?

Perpetuates
inheritance, even into
application space.

We should favor
composition over
inheritance.

Can we separate
framework logic from
application logic?

TYPED ENTITY’S
APPROACH
Create a plugin and associate it to Entity Type [and
Bundle]. This operates at the entity type level, great for
things like findTaggedWith(). We call these TYPED
REPOSITORIES.

Typed Repositories know what object to create, given
an entity. These are objects that contain the entity,
instead of replacing Node. We call these WRAPPED
ENTITIES.

BookRepository

Book

Book

nid: 12

Node

nid: 32

Node

nid: 44

Node

Book

nid: 44

Node

Book implements LoanableInterface
Book implements HierarchyInterface

::author() ✓
::cover($device) ✓
::loan($user) ✓
::tableOfContents() ✓
...

(this is a plugin)

BookRepository

Book

Book

nid: 12

Node

nid: 32

Node

nid: 44

Node

Book

nid: 44

Node

Book implements LoanableInterface
Book implements HierarchyInterface

::author() ✓
::cover($device) ✓
::loan($user) ✓
::tableOfContents() ✓
...

::findByGenre(‘SciFi’)

(this is a plugin)

LET’S SEE
SOME CODE
REMEMBER: Typed Entity is for your
project’s custom code. It is optimized to
improve DX while working on business
logic.

NEW
REQUIREMENT

“One important detail is that books
located in Area 51 are considered off
limits.”

- Your stakeholder

FIRST
APPROACH

MOVE ENTITY
LOGIC CLOSER
TO THE ENTITY

We have logic about “book” in a hook inside
of physical_media.module. We should bring
it into the Book class.

That should leave our access hook to check
on any wrapped entity: “does this entity
support access checks? If so, check it. If
not, carry on”

MORE REFINED
APPROACH

“WHAT TYPES
SUPPORT

ACCESS?”

?

This leads to better:
● Code organization
● Readability
● Code authoring/discovery
● Class testability
● Static analysis
● Code reuse

WAIT! HOW DOES IT
WORK?
typed_entity_repository_manager()→wrap($entity);

Returns an object of type Book… but how?

REPOSITORIES
ARE PLUGINS

We often attach
special behavior

to entities with
certain data

“books w/ sound”
“sci-fi books”“books in a collection”
“bestsellers”

“audiobooks”

VARIANTS

06

BookRepository

Book

nid: 32

Node

(this is a plugin)

nid: 8

Node

SciFiBook

::applies()

SciFiBook.php

CAN YOU IMPLEMENT
HOOKS FOR ME?

There are many entity
hooks. Typed Entity
could implement them
and delegate to
interfaces.

Does that happen?

!

ENTITIES HAVE MANY
RESPONSIBILITIES
 We render them as content in the screen
 They are used for navigation purposes
 They hold SEO metadata
 We add decorative hints to them
 We use their fields to group content
 They can be embedded
 ...

The most common thing we do with
entities is render them.

There is a natural
::applies logic → view modes.

Not statistically proven.

Typed Entity let’s you scope the
relevant bits of your preprocess,
view_alter, ...in a renderer object.

RENDERERS

ALSO
DECLARED IN

REPOSITORIES

UNDER THE
“renderers” KEY

renderers

Renderers\Base

Renderers\Teaser

*

* fallback for renders is optional

TESTABLE,
DISCOVERABLE,
MAINTAINABLE,
AND READABLE

IN SUMMARY
● Encapsulate business logic

in wrappers.

● Add variants (if needed) for
specialized business logic.

● When implementing
hooks/services check for
wrapper interfaces.

● Use renderers instead of
logic in rendering-specific
hooks.

● Add variants per view mode.

MAKE THEM TESTABLE, DISCOVERABLE,
MAINTAINABLE, AND READABLE

drupal.org/project/typed_entity

https://www.drupal.org/project/typed_entity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

