
Progressive
Decoupling

Made easy!

Mateu / e0ipso

What & why widgets CMS integrations

What we’ll cover

1

The widget registry federation3

2

What are
“widgets”?

JS Vue

React

Stand alone JavaScript
applications. Any framework.

1

Designed to be embedded and
configured by CMS editors.

2

What are the benefits of
JS over server generated
HTML?

Better
reactivity

Better dev experience

Distributed
delivery

Interaction in
static pages Bigger talent pool

The server can provide the unchanging parts, while
the JS application adds interactivity. This reduces
load on your servers while increasing website
performance.

Better
Reactivity and
Interactivity

Pages can be static or served
from cache (very fast)

1

JS adds the reactive / interactive
part

2

Different development teams write software
independently. They they can publish software on
the same platform without coordinating complex
deployment effors.

Distributed
Delivery

Teams write the JS code in
isolation.

1

Execute the JS in the browser in
the website.

2

Team 3Team 2Team 1

SERVER HTML

team1.example.org/header.js

cloud.ibm.com/cos/team2/widget.js

static.assets.dev/t3-price.js

Biggest Talent
Pool
According to extensive surveys, JavaScript and
TypeScript are the most commonly used
languages.

Since JavaScript is so popular you can leverage
many services that integrate with this technology.

Since JS is so popular there are many tools,
services, and frameworks that your developers
can leverage.

Better Dev
Experience

Many tools to help improve
the quality of the project

#

Many frameworks that will take
care of the rough edges

#

...StorybookJest

...Nuxt.jsWeb
Components

Should we build
JavaScript apps,
then?

Content,
content,
content

When content is your product, or content is
central to your business you need a CMS. CMS
provide many features hard to build from scratch.

Server side
CMS

● Content server
● Manage pages (URLs, ...)
● Access restrictions
● Manage metadata (SEO, …)
● Media library
● Security patches
● Editorially controlled layouts
● Moderation & preview
● ...

How about JS in
our CMS

templates?

What are the benefits of
widgets over JS in
templates?

Improved time
to market

Embed anywhere!

Embedded by
editors

No CMS
deployments

A developer creates a new widget in the registry
and it appears in the CMS editorial interface for
embedding. No additional effort. Bug fixes and
enhancements are also instantaneous.

No CMS
deployments

Why is this a big deal?

Development
JS & CMS

Editorial End user

Deployment Publication

!
Development

only JS!

End user& editorial

JS development
immediately appears in CMS

JS

CMS

JS

CMS

Embedded by
editors
The JS developers define the input data they
expect from editors. The CMS creates a form for
editors to input such data.

Many instances of the same type of widget can be
embedded with different configurations: different
content, color palettes, external integrations, ...

Embedded
anywhere
Since widgets are not embedded at build time, but
editorially, they can be placed anywhere:

● Using layout building tools
● Using WYSIWYG integrations
● Using content modeling tools
● Using 3rd party JavaScript
● ...

WSIWYG in body field

Layout Builder

Structured content is still the way to go! Still,
widgets are useful tools in several contexts.

When are
widgets a
good fit?

● Interacting with 3rd party APIs
Like review sites, commenting, ...

● Interactive tools
Like pricing calculators, checklists, …

● Data visualizations
Like maps of CDN availability, ...

● Adding some pop to the page

I want to start
embedding widgets
now!

How do I make it
happen?

1. Create a
widget
From a technical perspective a widget is a
function that takes a DOM id and renders JS in it.

A widget can also receive arguments as HTML data
attributes.

window.renderExampleWidget = function (instanceId) { const element = document.getElementById(instanceId); const title = element.getAttribute('data-button-text'); ReactDOM.render(
 <Widget title={title} />,
 element,
);
};

Very
easy
to port

(1) take any component,
(2) render it.

That’s it. Yes, really.

✓

2. Upload the
app code

The CMS can use this to either download the
files, or serve them from there.

3. Publish the
metadata
Otherwise this is just another JS app in some
repo.

This is just a JSON document containing all
the metadata about all the available apps,
available via the Internet.

CMS pulls
that JSON…

and that’s it!

1. Create the widget 2. Upload the widget

3. Publish metadata

Summary

Adding widgets to your CMS is a
matter of 3 simple steps.

window.renderExampleWidget = function (instanceId) {
 const element =
document.getElementById(instanceId); const title = element.getAttribute('data-button-text');

 ReactDOM.render(
 <Widget title={title} />, element,

);
};

I still don’t know
where to start...

Lots of existing
tooling
● Widget examples
● Widget registry boilerplate & catalog
● With CI/CD integration built in

https://github.com/js-widgets

Stakeholder
ready
Show the progress on the JS apps to
stakeholders soon. Also allow editors
to browse all available widgets easily.

The widget
catalog
The widget registry reads
from the widget metadata
and creates a static site
catalog out-of-the-box.
Zero effort.

Governance like
you need it

You decide what registries to
accept into your CMS 1

You decide what widgets and
updates go into your registry 2

React

ReactDOM

ReactIntl

React

ReactDOM

ReactIntl

React

ReactDOM

ReactIntl

Production
ready
Battle tested in production
with many out-of-the-box
optimizations.

React ReactDOM ReactIntl

LIGHT

LIGHT

LIGHT

https://github.com/js-widgets/example-widget#external-dependencies

Exclude shared dependencies
from all JS bundles via webpack

1

Have the CMS provide the deps
as the bundles expect

2

Documentation
available

https://video.mateuaguilo.com

Thank you!

